Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Veterinary Science ; : 17-23, 2015.
Article in English | WPRIM | ID: wpr-206917

ABSTRACT

Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.


Subject(s)
Animals , Male , Mice , Apoptosis/drug effects , Butylated Hydroxyanisole/chemistry , Cell Survival/drug effects , Cells, Cultured , Hepatocytes/drug effects , Hydrogen Peroxide/toxicity , Mice, Inbred ICR , Molecular Structure
2.
Braz. j. pharm. sci ; 48(3): 405-415, July-Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-653454

ABSTRACT

Antioxidants are currently used as efficient excipients that delay or inhibit the oxidation process of molecules. Excipients are often associated with adverse reactions. Stability studies can guide the search for solutions that minimize or delay the processes of degradation. The ability to predict oxidation reactions in different drugs is important. Methods: This study was conducted to assess the rational use of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), sodium metabisulfite (SMB), propyl gallate (PG) and cysteine (CYS) in tablet formulations of simvastatin and ketoconazole. These antioxidants were evaluated according to stability parameters and the relationship between efficiency of the antioxidant and chemical structure of the drugs. Results were compared with DPPH tests and computational simulations. BHT was most efficient regarding simvastatin stability, and the most effective BHT concentrations for maintaining stability were 0.5 and 0.1%. In relation to ketoconazole, SMB was most efficient for maintaining content and dissolution profile. The evaluation by DPPH showed that the largest percentage of absorbance reduction was observed for PG, while SMB proved most efficient and had lower consumption of DPPH. The same pattern was observed, albeit with lower efficiency, for the other lipophilic antioxidants such as BHT and BHA. The results of the molecular modeling study demonstrated that electronic properties obtained were correlated with antioxidant activity in solution, being useful for the rational development of liquid pharmaceutical formulations but not for solid oral formulations. This study demonstrated the importance of considering stability parameters and molecular modeling to elucidate the chemical phenomena involved in antioxidant activity, being useful for the rational use of antioxidants in the development of pharmaceutical formulations.


Atualmente, antioxidantes são usados como excipientes eficientes, que retardam ou inibem o processo de oxidação de moléculas. Excipientes são frequentemente associados a efeitos adversos. Estudos de estabilidade podem ajudar na busca por possíveis soluções para minimizar ou retardar os processos de degradação. A habilidade de prever as reações de oxidação em diferentes fármacos é importante. O estudo foi conduzido com o objetivo de avaliar o uso racional de hidroxianisol butilado (BHA), hidroxitolueno butilado (BHT), metabissulfito sódico (SMB), galato de propila (PG) e cisteína (CYS) em formulações de comprimidos de sinvastatina e cetoconazol. Eles foram avaliados por parâmetros de estabilidade e pela relação entre a eficiência dos antioxidantes e a estrutura química do fármaco. Os resultados foram comparados com testes de DPPH e simulações em computador. BHT foi mais eficiente com relação a estabilidade da sinvastatina e às concentrações mais eficientes para manutenção de estabilidade foram 0,5 e 0,1%. Com relação ao cetoconazol, SMB foi mais eficiente em manter o conteúdo e o perfil de dissolução. A avaliação por DPPH mostrou que o maior percentual de redução de absorção foi observado para PG, enquanto que SMB mostrou ser mais eficiente e consumir menos DPPH. A mesma tendência foi observada com menos eficiência em todos os outros antioxidantes lipofílicos como o BHT e BHA. Os resultados do estudo de modelagem molecular demonstraram que as propriedades eletrônicas obtidas podem ser correlacionadas com a atividade antioxidante em solução, sendo útil para o desenvolvimento racional de formulações farmacêuticas líquidas, mas não para formulações sólidas orais. Este estudo demonstrou a importância de considerar parâmetros de estabilidade e modelagem molecular para elucidar os fenômenos químicos envolvidos na atividade antioxidante, sendo úteis para o uso racional de antioxidantes no desenvolvimento de formulações farmacêuticas.


Subject(s)
Pharmaceutical Preparations , Administration, Oral , Drug Utilization/classification , Antioxidants/analysis , Propyl Gallate/pharmacokinetics , Butylated Hydroxyanisole/pharmacokinetics , Butylated Hydroxytoluene/pharmacokinetics , Simvastatin/analysis , Cysteine/pharmacokinetics , Excipients/classification , Ketoconazole/analysis
3.
Chinese Journal of Pathophysiology ; (12)2000.
Article in Chinese | WPRIM | ID: wpr-525349

ABSTRACT

AIM: To study the mechanism of butylated hydroxyanisole-induced neural differentiation of fetal liver Sca-1~+ cells in vitro. METHODS: Sca-1~+ cells from 14.5-day-old mouse fetal liver were isolated with a magnetic cell sorting kit. Cultured cells pretreated with or without extracellular signal-regulated kinase (MEK1) inhibitor, PD98059, were induced by 200 ?mol/L butylated hydroxyanisole (BHA) for 24 hours, and then incubated in serum-free medium. Expression of genes in treated or untreated cells were assayed by Western blotting and RT-PCR. RESULTS: There was low level of neuronfilament-L (NF-L) and brain factor-1 (BF-1) in fetal liver Sca-1~+ cells, but no neuronfilament-H (NF-H) and tyrosine hydroxylase (TH) was observed. BHA significantly promoted the expression of neuron-specific NF-L, NF-H, BF-1, and TH in fetal liver Sca-1~+ cells. NF-L, NF-H, BF-1 and TH increased by 6.32 fold, 2.73 fold, 3.37 fold and 2.68 fold, respectively (all P

SELECTION OF CITATIONS
SEARCH DETAIL